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ABSTRACT 

SCR = the class of commutative rings without nilpotent elements. 
THEOREM. R is an amalgamation base for SCR iff rad( l )  = Ann2(l) for I _C R 
finitely generated. 
SUPPLEMENT. If R (~ SCR then R is contained in an amalgamation basis for 
SCR having no new idempotent elements. 
CR = the class of commutative rings. 
THEOREM. R is an amalgamation base for CR iff R is a pure R-submodule of 
any commutative ring extending R. 

Introduction 

Let K be a class of structures. An element A of K is said to be an 

amalgamation base for K iff for any two structures B, C C K which contain A, 

there is a structure D containing B and C. In diagrammatic form: 

f 
B - - .  

A " ~ D  

" " ' ~ C  " / J ~ '  

Our main result is a precise description of the amalgamation bases for the class 

SCR of semiprime commutative rings (commutative rings without nilpotents). 

We will also characterize the amalgamation bases for CR (commutative rings), 

but the result is less satisfactory. We note that all rings with which we deal are 

assumed to have an identity. 

This work was motivated by a result in an anonymous letter received by 

Weispfenning, stating that the class of amalgamation bases for SCR is not 

axiomatizable. 
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w Amalgamation bases for  SCR 

DEFINITION 1.1. Let  I be an ideal of  the commuta t ive  ring A,  r a d I  = 

{a E A : for some n a "  E I}. By abuse of notat ion,  rad(0) is also deno ted  rad A. 

The  annihilator  of  I (Ann  I )  is defined to be {a E A : aI = 0}. We write Ann2(I )  

for  A n n ( A n n  I) .  

A is said to be semipr ime iff rad A = (0). A is said to be regular iff for  every 

a E A there is an x such that 
a2x  = a .  

We assume some familiarity with regular  rings. 

THEOREM 1.2. The semiprime ring A is an amalgamation base for SCR iff for 

each finitely generated ideal I of A we have : 

(1) Ann2(I)  = rad I. 

REMARK 1.3. In any semiprime ring A we always have r a d l C _ A n n 2 ( I ) .  (If 

a G r a d /  and b E A n n / ,  then for  a large n, a 'b  = 0 ,  hence  (ab)" = 0  and 

ab = 0.) Fu r the rmore  if A is regular we will always have (1), as follows: if 

a E Ann2(I )  where I = ( b l , "  ", b~) let e be the union of  the idempoten ts  e~ 

associated to the b~ by the formula  e~ = b~x~ where b~x, = b,. Cf. [2]. Then  e E I 

and 1 - e E A n n  I. Thus  a (1 - e) = 0, a = ea, and a E I, hence  a E rad I. Thus  

regular  rings are amalgamat ion  bases for  SCR, as is known.  

Af te r  proving T h e o r e m  1.2 we will give fur ther  examples  of (nonregular)  

amalgamat ion  bases. For  convenience  we divide the proof  into two lemmas.  

LEMMA 1.4. Let A be a commutative semiprime ring, I = (al, . �9 ak ) a finitely 

generated ideal of A ,  b ~ Ann2(I) ,  b E rad( I ) .  Then there are semiprime exten- 

sions B, C of A such that: 

1) b ~  Anng( IB) ,  

2) b E I C .  

PROOF. 1) Let B ' =  A[x] / (x I ) ,  B = B' /radB' .  Then the canonical  

h o m o m o r p h i s m  A --> B is injective. Indeed  the map x ---> 0 induces a commuta -  

tive diagram 

A -o B '  \ l '  
A 

so the map A --* B '  is injective. On  the o ther  hand, if a E A and a = 0 in B, then 

for  some n, a"  = 0 in B ' ,  so a "  = 0 in A, and hence  a = 0 in A, as desired. Thus  

B extends A, and in B the e lement  x annihilates I. 
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On the o the r  hand  bx ~ 0 in B, for  o therwise  we would have  a relat ion in B ' :  

b"x" = ~_~ xijpj (x ). 
J 

Equat ing  t e rms  of degree  n, we find b" ~ L so b E rad/ ,  a contradict ion.  

2) Let  C ' = A [ x , . . . , x k ] / ( Z a , x , - b ) .  Let C = C'/radC'. We claim that  C '  

(and hence  C)  extends  A. As  we know that  b ~ IC, this will comple te  the proof .  

The  verification that  C '  extends  A consists of  a ra ther  long, essentially trivial 

computa t ion .  A s s u m e  that  there  is a relat ion: 

(2) a = p(~)(Ya,x , -  b) in A [ ~ ] .  

We  claim that  a = 0. In fact we claim that  b annihi lates  all coefficients of p (2) .  

For  nota t ional  convenience  use multi-indices,  writing: 

= E p,x" 
J 

where  J = (jl," �9 ", jk), pJ E A for  all J, pj = 0 for  all but  finitely many  J, and x J is 

(by definition) 

X~l �9 . . X / d ' .  

We will p rove  by downward  induction on I J I=  E,j, that  bpj = 0. It then 

follows that  a = 0. If I J [ is large then pj = 0, so bpj = 0. Assume  there fore  that  n 

is fixed, and bpj = 0 wheneve r  I J [  = n + 1. We  p ropose  to show that  bpj = 0 

wheneve r  I J I  = n. 

This will be p roved  by induction over  a var iant  of the lexicographic  order ing.  

For  o" a pe rmuta t ion  on {1 , . - . ,  k}, let J "  = (jl-, "~ ", j~-). Say that  Jl  is equivalent  

to J2 iff for  some  pe rmuta t ion  or, J7  = J~. Say that  J~ dominates J2 iff for  some  

pe rmu ta t i on  ~r E Sk, J~" is lexicographical ly larger than J2. This  relat ion induces a 

l inear order ing of type ~o k on the equivalence  classes. For  any mult i - index J and 

integers  i (1 = i =  < k)  let J/i = (]'~,...,fi_~, j,+~,.. ",jk). We  will p rove  that  if 

]JI  = n then for  each i (1 < i < k):  

(3) a,p, = O. 

This will p rove  that  each pj annihi lates  (al , . ' . ,ak) ,  hence  bpj=O 

(L E Ann2(0)). We  p repa re  to p rove  (3) (for all sui table i, J )  by transfinite 

induction on the height of J/i with respect  to the domina t ion  relat ion (the 

re levant  pe rmuta t ion  group  here  is S~_~). T o  start  the induct ion we claim: 

(4) If J/ i=(O, . . . ,O)  then a,pj=O. 
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We must write out the relation (2) explicitly; we use the notation 3, = 

(8~0,"" ", ~,~) (the Kronecker delta). For each J, (2) yields: 

(5) bp,+,,= 
O, +'~,, >o)  

If [ J] = n, then by hypothesis bpj+~, = O. In particular if J / i  = (0,-- . ,  O) we get: 

a~p~ = 0 

as desired. 

To proceed with the induction, assume that [ J I  -- n, 1 -< i =< k, and arpj, = 0 

whenever J ' / i '  is dominated by J/ i .  We will show that a~p~ = 0. We examine (5): 

(6) 0 =  ~ a,pj+8,-,,. 

( j ,+Si , )>O 

It suffices to show that each term a,pj+8,_~, = 0 in (6). Call r refractory if 

arp~+8,-,,# O, and rewrite (6) as: 

(7) O= ~ arp,+~,-~,. 
r refractory 

Choose r refractory so that j, is minimal. 

Multiply (7) by pj+s,_~,, obtaining: 

(8) 0 = ~ a~pj+8,-8,pJ+8,-,,. 
s refractory 

Now for s #  r, J + ,5~ - & / s  is dominated by J + 8~ - &/r.  It follows that for s #  r, 

asp1+~_~, = O, and (8) reduces to: 

(9) 0 = 2 a,p j+8,-8,. 

Since A is semiprime, 

(10) a,p j+~,-8, = O, 

contradicting the assumption that r is refractory. 

EXAMPLE 1.5. Let A ' =  F[a~,a2,  b, rl, r2, s] be a polynomial ring in six 

indeterminates over a field F. Let J be the ideal of A '  generated by: 

1) All products of three indeterminates. 

2) All squares of indeterminates. 

3) a~a2, a~b, a2b, r~r2, r~s, r2s, a~r~, a2r2. 

4) air2 + a2rl, a l s  - br~, a2s - br2. 
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Let A = A ' /J .  Then A has an F-basis consisting of 

1, al, a2, b, rl, r2, s, air2, als, a2s, bs 

Ann(al,  a2) = (al, a2, b) and Ann2(al, a2) = (al, a2, b). In particular b E 

Ann2(al, a2). On the other hand, the polynomial identity in A[u ,  v]: 

bs = (b - alu - a2v)(s + flu + r2v) 

shows that b E (al, a2) in any extension of A. 

PROOF OF THEOREM 1.2 (Necessity). 

It is now clear that in every semiprime amalgamation base we have Ann2(I) = 

radI for finitely generated ideals. Indeed, if I is finitely generated and 

b ~ Ann2(I) - rad(I), we may construct according to Lemma 1.4 two semiprime 

extensions B, C of A which evidently cannot be amalgamated (if B, C C D, then 

one would have b E ID and b ~  Anng(ID),  which is nonsense). 

In the proof of the second half of Theorem 1.2 we will use the regular hull of a 

semiprime ring A, that is the ring .4 generated by A and symbols {a-l: a ~ A} 

subject to the relations of A and the relations {a2a -1= a, a(a - l )  2= a -1} 

(compare [5, 3]). This is characterized by the existence of a unique homomorph- 

,4 ~R 

ism & such that: 

\ /  
A 

commutes 

whenever R is a regular extension of A. We will assume a certain acquaintance 

with idempotents in regular rings (cf. [2]). 

LEMMA 1.6. Let A be semiprime, and suppose that Ann2(I)= rad(I) for all 

finitely generated ideals I of A.  Let R be a regular extension of A generated by A 

(under +,  - , . ,  -1). Then R = ,4, the regular hull of  A ,  under the canonical 

induced homomorphism / i  --~ R. 

PROOF. The canonical induced homomorphism 

\ /  
A 

will of course be surjective in the present instance, so we must verify that the 

kernel is trivial. Suppose then that we have in R:  
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(11) p ( a , , . .  ., a,, a ~ ' , . . . ,  aT ' )  = 0 

for  cer tain e lements  d, ~i-' of R. We  must  show that  (11) is a consequence  of the 

re la t ions in A and the relations: a2a - '  = a, a ( a - ' )  2 = a -~. It will be  convenien t  

to m a k e  use of the idempoten t s  e, = a~a ?', and of Boo lean  combina t ion  of these 

idempoten ts .  

Def ine  a bit of the {e,} to be  a p roduc t  of B = II~fi where  each f~ is e i ther  el or  

its c o m p l e m e n t  ( 1 -  e,). 

Evident ly  p(d,  d - ' ) =  0 iff for  each bit f 

(12) fp(a, a - ' ) =  o. 

Define  f, = II{f~: f~ = e,}, f2 = {IIf~ : f~ = 1 - e,}, so that  f = f t f2.  Let  a = {lqa, :fj = 

e~}, and let N be a large integer.  Then  (12) is equivalent  to each of the following: 

f,f~p( a, a- ' )  = o 

a Nf~f2p(& d - ' ) =  o 

f2aNp(d, 4- ' )  = O. 

Taking  N large and replacing p(d,  d -I) by a N p ( &  a - t )  we may assume that  no 

monomia l s  including a71 occur  in p when f~ = e,. On the o the r  hand,  since 

f2a7 ~ = 0 when  f~ = 1 - e~, one  may  assume that  p is a function of the r alone.  

Thus  (12) b e c o m e s : "  

(13) f~p(a) = o. 

Let  b = p (d ) .  We  may  n u m b e r  the a, so that  for  1-< i =< k f~ = 1 -  el and for  

k + l - i =  < l f~ = e,. T o  conclude our  a rgumen t  we p rove  that  each of the 

following s t a t ements  implies the next  (in fact they are evident ly  equivalent) :  

1) f 2 p ( a ) = O  in R. 

2) b E A n n 2 ( a l ,  . . . , a k )  in A. 

3) b E r a d ( a l , . . . , a ~ )  in A. 

4) f 2 p ( ~ i ) = 0  in A. 

(1 :#, 2): If c E A n n ( a , , . . . , a k )  then for 1 <- i <= k ce, = 0, i.e. cf~ = c. Thus  

c = f2c, and then bc = f2bc = O. 

(2 ~ 3): By assumpt ion  on A. 

(3 :::> 4): Since b ~ r a d ( a l , . . . ,  ak) in A, the same s t a t ement  holds afor t ior i  in 

ft.. As  we noted  earlier,  it follows that  b ~ A n n 2 ( a , , . . . , a k )  (inA,).  Since 

f~E A n n ( a ~ , - . . ,  a~), we conclude that  f2b = O. 



Vol. 25, 1976 AMALGAMATION BASES FOR COMMUTATIVE RINGS 93 

PROOF OF THEOREM 1.2 (Sufficiency). 

It is known that regular commutative rings are amalgamation bases for SCR 

(cf. [4]). 

If we are given any semiprime ring A in which radicals and double 

annihilators of finitely generated ideals coincide, consider any diagram 

//8 
A 

C 

of semiprime rings and embeddings. We may take B, C to be regular without 

loss of generality. In particular each element a has an "inverse" a - '  in B 

determined by 
a2a -1= a, a ( a - l )  ~= a- l ;  

and similarly a has an "inverse" in C. Let A~ be the subring of B genera tedby  

A U {a- ' :  a E A}, and let A2 be the corresponding ring of C. We remark that 

A1, A2 are regular subrings of B, C. 

By Lemma 1.6 A1 = A2 over A. Identifying A , , A 2 ,  consider the diagram: 

B 

A ~A1 ; 

this can be amalgamated over A~, hence over A. 

Everything proved so far leaves open the possibility that all amalgamation 

bases for SCR are in fact regular. To ensure a supply of nonregular amalgama- 

tion bases we prove: 

THEOREM 1.7. Let A be a semiprime commutative ring. Then there is an 

extension B D_ A having the same idempotents as A ,  such that B is an amalgama- 

tion base for SCR. 

PROOF. It suffices to show that for any finitely generated ideal I and any 

a @ A -  rad(I), it is possible to find an extension B of A having the same 

idempotents as A, in which a ff Ann2(IB). To this end we set B = A [x]lrad(xI). 

We know that B extends A, x E Ann(I) ,  and a x ~  0 (Lemma 1.4(1)). 

To conclude our argument, we must show that for any p ( x ) ~  A [x] such that 

(p2 _ p) E rad(xI), there is an idempotent e E A such that (p - e) E rad(xI). 

Assume then that p 2 _ p  ~ rad(xI); it follows easily that the constant term 
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e = p ( 0 )  of p is idempotent .  Write p ( x ) =  e+xq(x) .  Our claim is that 

xq ~ radxL We have: 

(14) p 2 _  p = [(2e - 1) + xq(x)]xq(x) ~ rad(xI).  

If q(x) = Y.a~x i our claim is that each qi ~ rad(I) .  Indeed, in the contrary case 

write q = qo(x)+ x 'ql(x)  where qo(x)~ ( radI)  and the constant term ql(0) of ql 

is not in radL (14) yields: 

(15) [(2e - 1)+ x'+~q~(x)]x"+~q~(x)E rad(xI).  

Since (2e - 1) is invertible (in fact (2e - 1) 2 = 1) it follows that q~(0) E rad(xI),  a 

contradiction. 

The simplest way to obtain nonregular amalgamation bases is by starting with 

a ring A whose only idempotents  are 0, 1, but which is an integral domain. The 

extension of A afforded by Theorem 1.7 cannot be regular. 

Theorem 1.2 implies that the class of amalgamation bases is not axiomatizable, 

a result cited in the introduction. More precisely: 

TI4EOREM 1.8. Let K be a class of amalgamation bases for SCR, and assume 
K is axiom atizable (or just: closed under ultrapowers). Then K is contained in the 
class of regular commutative rings. 

PROOF. Suppose on the contrary that A E K is not regular, so that we have 

an element a E A such that a ~  (a2). It then follows that a " ~  (a "§ for each n, 

for if a"  = a"§ then (a - a2x)" = a " ( 1 -  ax)" = 0, so a = a2x, and a E (a2). 

Take  a nonprincipal ul trapower A*  of A over  to, and let b, c E A * b e  

represented by the functions (a, a, a , - - - )  and (a, a 2, a3, . .  -). Then it is easily 

seen that b E Ann2(c) but b ~  rad(c), contradicting the assumption that A * is an 

amalgamation base. 

w Amalgamation bases for CR 

Let CR be the class of commutat ive rings. Recall that a module M over a ring 

A is a pure submodule of the A-modu le  M '  iff for any other A-modu le  N the 

sequence: 

(16) 0---~ M@N--* M'@N 

is exact. 

An equivalent condition is that for any l x k matrix T over  A and elements 

m l , . . . ,  mk of M, the system of equations in indeterminates x l , - - ' ,  x~,: 
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(17) 2 T  = tfi 

is solvable in M iff it is solvable in M ' .  

Yet another  formulat ion of  purity is obta ined  using: 

FACT 1.9 (see [1]). The  system of equat ions  (17) is solvable in an extension 

of M iff for each fi ~ Ak  such that Tfi = 8, we have rfi �9 ~ = 0. 

The  following theorem is scarcely surprising. 

THEOREM 1.10. The ring A is an amalgamation base for CR iff for every 

commutative ring B extending A, A is a pure A-submodule  of E. 

PROOF. Assume A is a pure A - s u b m o d u l e  of  each of  its ring extensions. 

Then  any diagram 

A "---....~ c 

of commuta t ive  rings may be amalgamated  as follows: 

A B" B| 
~ C ~ 

Next  suppose that A is not a pure submodule  of  the ring B _D A. Assume 

specifically that T is an I x k matrix over  A, ~ E A ~ and the equat ions:  

(18) ~T = 

are solvable in B but not in A. We seek an extension C of A such that (18) is 

solvable in no extension of  C. Then  it is impossible to amalgamate  the diagram: 

and our  a rgument  will be complete .  

We in t roduce indeterminates  t2 = u~ , . . - ,  u~ and let C = A / ( T a ) ;  in o ther  

words,  if T = (tlj) then C = A/(Ejtijuj: 1 <= i <= l). Of course C extends A,  since 

the map  eo: ti --~ 0 induces a commuta t ive  diagram: 

e0 

A ~ C  ~A 
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Of course also Tti = 0 in C. We claim that t~ �9 ~ 0, so that (18) is insoluble in all 

extensions of C. 

Suppose on the contrary that ti �9 ~ = 0 in C, so that we may write a polynomial 

identity in A[t~]: 

(19) E rjuj = E • toujp,(a). 
i j 

Let a, be the constant term of p~(a), and equate the coefficients of uj in (19): 

(20) rj = Y~ toa,. 
i 

Thus tiT = ~, which would solve (18) in A, a contradiction. 

Theorem 1.10 would not appear to be the last word on the subject of 

amalgamation bases for CR, but it does provide useful information. In particular 

any ring A which is absolutely pure as an A-module  is an amalgamation base. 

The following terminology may be found convenient. 

DEFINITION 1.11. Let A be a commutative ring. We will say that A is 

module-pure (respectively, ring-pure) iff A is a pure submodule of any 

A-module  (respectively, commutative ring) containing A. 

We have not yet excluded the possibility that ring-purity actually implies 

module-purity. 

REFERENCES 

1. P. Eklof and G. Sabbagh, Model completions and modules, Ann.  Math.  Logic 2 (1971), 
251-278. 

2. L. Lipshitz and D. Saracino, The model companion o[ the theory o[ commutative rings without 
nilpotent elements, Proc. Amer .  Math. Soc. 38 (1973), 381-387. 

3. L. van den Dries, Artin-Schreier theory [or real regular rings, to appear  in Ann.  Math. Logic. 
4. V. Weispfenning,  Model completeness and elimination o[ quanti]iers for subdirect products, to 

appear  in J. Algebra.  
5. R. Wiegand,  Modules over universal regular rings, Pacific J. Math. 39 (1971), 807-819. 

RUTGERS UNIVERSITY 
NEW BRUNSWICK, N.J., US A 


